

PYGMY RABBIT POPULATION MONITORING

PINEDALE ANTICLINE PROJECT AREA and BOULDER REFERENCE AREA, 2011

Hayden-Wing Associates, LLC Natural Resource Consultants

Monitoring Requirements

- Wildlife Monitoring and Mitigation Matrix, 2008 ROD:
- "3 consecutive years of decline in presence or absence of a species,

or

an average of 15% decline in numbers of individuals each year over 3 years"

Site-Occupancy Analysis

(MacKenzie et al 2006)

- "Most powerful tool available for monitoring presence/absence"
 (UW Coop Fish and Wildlife review)
- Occupancy will be correlated with population size
- Accounts for effect of detection probability
- Generates unbiased estimates of occupancy

Monitoring Objectives:

- Determine pygmy rabbit occupancy
- Determine presence or absence of pygmy rabbits in PAPA and Reference sites
- Visit each site 2 x to calculate detection probabilities

Methods Sampling Design

- •696 sites
- •582 in PAPA
- •114 in Boulder Reference Area

WYNDD surveyed 444 sites

(1 visit each site)

HWA surveyed remaining 252 sites

(2 visits each site)

HWA surveyed 390 sites

(2 visits each site)

- Each site 400 m
 x 400 m
- 8 Belt transects, 50 m wide
- Survey Visit 1 & 2:
 - Record presence/absence

Legend

- Round 1 Survey Detections
- Round 1 Presence Absence
 - Round 1 Survey Route
- Round 2 Survey Detections
- Round 2 Presence Absence

Round 2 Survey Route

Identification of pygmy rabbit presence

Identification of pygmy rabbit presence

- Use fresh sign (positively < 1 year)
- Don't use old sign (possibly > 1 year)

- Analysis: MARK, Robust Design Occupancy (Mackenzie et al. 2003)
 - Does not assume independence between years
 - Explicitly accounts for local extinction & colonization rates, and detection
 - Estimates occupancy & change in occupancy
- Evaluated 9 a priori models with AICc (Burnham & Anderson 2002)
- Separate occupancy and detection estimates for PAPA & Reference

Results

Model ¹	AIC _c	ΔAIC_c	AIC _c wt	K	Deviance
Ψ(group) ε(group) γ (.) p(group+survey)	1149.57	0.00	0.530	13	1122.90
Ψ(group) ε(group) $γ(group)$ p(group+survey)	1151.02	1.45	0.250	14	1122.24
Ψ(group) ε(.) γ (.) p(group+survey)	1152.13	2.56	0.150	12	1127.55
Ψ(group) ε(.) γ(group) p(group+survey)	1154.14	4.57	0.053	13	1127.00
Ψ(group) ε(group) γ (.) p(.,.)	1176.41	25.40	0.000	6	1164.26
Ψ(group) ε(group) γ(group) p(group,.)	1179.20	28.12	0.000	10	1158.80
Ψ(group) ε(.) γ(.) p(.,.)	1179.74	28.73	0.000	5	1169.64
Ψ(group) ε(.) γ(.) p(year,.)	1180.49	29.48	0.000	6	1168.34
Ψ(group) ε(.) γ (group) p(.,.)	1181.72	32.15	0.000	6	1169.57

¹ Standard notation: Ψ = probability of occupancy, ε = probability of extinction, γ = probability of recolonization, p = probability of detection

Results 2010

- OCCUPANCY:
 - 79% in PAPA (95% CI = 73-85%)
 - 82% in Reference Area (95% CI = 68-91%)

- DETECTION:
 - 75% during survey visit 1 (95% CI = 68%-81%)
 - 95% during survey visit 2 (95% CI = 89-98%)

Results combining 2010 and 2011

OCCUPANCY:

- 78% in PAPA (95% CI = 69-85%)
- 84% in Reference Area (95% CI = 73-91%)

• DETECTION 2010:

- 75% during survey visit 1 (95% CI = 68-81%)
- 95% during survey visit 2 (95% CI = 89-98%)

DETECTION 2011:

- 88% during survey visit 1 (95% CI = 83-92%)
- 87% during survey visit 2 (95% CI = 82-91%)

Results (continued)

- Re-colonization (γ)
 - 20% in PAPA (95% CI 9%-40%)
 - 17% in Reference (95% CI 4%-46%)
- Extinction (ε)
 - 43% in PAPA (95% CI 35%-52%)
 - 32% in Reference (95% CI 22%-44%)

Difference in Occupancy

- Between PAPA and reference area:
 - Estimate= 0.075 SE 0.056 CI -0.035 to 0.186
- Cl's overlap 1, meaning there is not a significant difference.
- However, this is comparing only two years of data. We have increased the sample size from 2010 and would like to examine another year's data before making conclusions.

Considerations

- Consistent observer skill/training
- Consistent search effort
- Continue using MARK, Robust Design Occupancy (Mackenzie et al. 2003)
- Incorporate covariates

Conclusions

- Occupancy Analysis accounts for detection
 - Yields unbiased occupancy estimates.
- Occupancy = 78% in PAPA & 84% in Reference
- Maintain consistent survey dates among years & between study areas.
- No significant difference between groups 2010-2011
 - Occupancy
 - Extinction
 - Re-colonization

Hayden-Wing Associates, LLC Natural Resource Consultants